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Logarithmic decay laws in glassy systems 

W Gotzet and L Sjogren 
Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Goteborg, 
Sweden 

Received 17 November 1988, in final form 1 February 1989 

Abstract. The equations for the p relaxation dynamics as obtained within mode-coupling 
theory for the glass transition are solved asymptotically for parameters near Whitney cusp 
singularities. The solution is given by a two-parameter scaling law, where the time tenters 
as In t and where the scaling times depend exponentially with a Vogel-Fulcher like form on 
the control parameters. Themaster functionis given in terms ofweierstrass'elliptic function. 
It describes crossovers from critical relaxation @(t) CC 1/ln2t to a constantf,, to a power-law 
decay l/t", to @(t) -In t, or to @(f) = ln2t depending on the sector in parameter space. 
The relaxation data for the Cu-Mn spin-glass alloy can be described by the theory for a time 
interval of eight decades. 

1. Introduction 

The glass transition singularities, which appear in mode-coupling theories, can be classi- 
fied according to underlying topological singularities of certain mappings in high-dimen- 
sional spaces. The dynamics of the /3 relaxation region is specified by a few relevant 
parameters whose number is characteristic for every type of singularity. The simplest 
singularities are A2 cuspoids or Whitney folds. In this case power-law relaxation is found 
at the critical point and scaling laws describe the dynamics near the transition. If 
the system exhibits a certain asymmetry, as expected e.g. between charge and mass 
fluctuations in ionic melts, a /3 peak may occur. It is located above the known aresonance 
and it exhibits stretching over many decades. In the strong-coupling limit the shape 
function is given by a Cole-Cole formula. These and other findings indicate that the 
singularities connected with Whitney folds are relevant for a description of structural 
glass transitions as observed in simple glass-forming undercooled liquids (see Gotze and 
Sjogren 1989 and references therein). 

For spin-glass transitions neutron scattering discovered relaxation stretching (Mezei 
and Murani 1979) even larger than that detected recently for structural glass transitions 
(Mezei er a1 1987, Richter et a1 1988). But while the latter data obey a scaling law, the 
time-temperature superposition principle, the former do not show such simplicity. A 
major part of the spin-glass data can be described by a c In t law, where the prefactor c 
depends sensitively on temperature (Mezei and Murani 1979, Binder and Young 1986). 
Such logarithmic decay is not known for structural glass transitions. It was noticed 
(Gotze and Haussmann 1988) that the mentioned spin-glass results are generic features 
t On sabbatical leave from: Physik-Department der Technischen Universitat Munchen, D-8046 Garching, 
and Max-Planck-Institut fur Physik und Astrophysik, D-8000 Mdnchen, Federal Republic of Germany. 
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of the A3  glass transition singularity, the next more complicated scenario connected 
with Whitney cusps. Such a singularity is exhibited in a mode-coupling theory for a 
conventional microscopic spin-glass model, which was formulated some years ago. In 
particular a simple one-component model for the spin-glass transition was examined 
(Gotze and Sjogren 1984); its numerical solution can account semi-quantitatively for the 
two decades of relaxation dynamics covered by the mentioned neutron scattering work 
(Gotze and Haussmann 1988). Therefore we want to pursue this line and study the 
complete /3 relaxation for this Whitney cusp singularity. 

The paper is organised as follows. After a compilation of the necessary dynamic 
equations for the /3 relaxation we derive the @(t)  “1/1n2(t/tl) law for the critical decay 
at the cusp singularity for the correlator @ as a function of time t. The leading correction 
to this asymptotic law is also determined. Then the crossover between the critical 
logarithmic decay and the normal power-law decay is described by a logarithmic scaling 
law. This concept denotes a conventional dynamic scaling law, where however the 
normal time t is replaced with ln(t/tl). In § 4 it will be shown that there are only two 
relevant parameters (g, q )  for the description of the dynamics near a Whitney cusp. 
Connected with these parameters there are two characteristic timescales ( tg ,  tu) which 
diverge for E - +  0 or q + 0 respectively, where ( E ,  q )  = (0,O) specifies the cusp. The 
divergence of the scales is the reason for the slowing down of the motion near an A, 
singularity. The dynamics is described by a two-parameter logarithmic scaling law, 
where the two relevant parameters are ln(tE/tl) and ln(t,/tl) respectively. The master 
function is given in terms of Weierstrass’ elliptic function. There are two hypersurfaces 
E = 0 and q = 0 where the general result specialises to simple one-parameter logarithmic 
scaling laws. They describe the crossover from the critical decay to a ln(t/ti) or a 
ln2(t/tb) relaxation law respectively. In the conclusions some possibilities for gen- 
eralisations or applications of our theory are discussed. 

2. Dynamic equations 

The general equations for the /3 relaxation have been derived in a preceding paper to be 
referred to as GS (Gotze and Sjogren 1989). To keep the following calculations self- 
contained from a mathematical point of view we will collect the most relevant starting 
equations from GS in this section. Our results will be exemplified by solutions for a 
dynamic model dealing with one correlation function (P(z),  which obeys 

@ ( z )  = -1/{z - l/[(z + iv)/Q2 + ~ ~ [ F ( @ ( t ) ) l ( z ) ] } .  (2.1) 
Correlator @(z)  is a positive analytic function of complex frequency 2. It is the Laplace 
transform of a real even correlation function @(t) of time t ,  and is defined as in GS 
equation (1.1). Parameter Q > 0 is the characteristic microscopic frequency scale and 
v 2 0 is a stochastic friction constant. The mode-coupling functional F is a polynomial 
with coefficients U ,  > 0 given in GS equation (1.4b). The U ,  are the mathematical control 
parameters of the theory; they are combined to a vector V in control parameter space 
RN. We will show results for the F12 model, specified by F(f) = vlf + u2f? ,  and for the 
F13 model, specified by F(f) = u l f +  u3f3. The latter form is relevant for spin-glass 
transitions and the former for structural glass transitions. 

Near glass transitions a microscopic time t ,  and a corresponding frequency Q, = 
2n/t, are defined implicitly so that the regular term ( z  + iv)/R2 in (2.1) is much smaller 
compared with the mode-coupling term for 1 z I Q,, t % t,. Then one can drop the 
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( z  + iv) term in equation (2 .1) .  The resulting equation, which describes a as well as p 
relaxation, is scale-invariant; with @(t)  also W ( t )  = @(t /y )  is a solution for all y > 0. 
Hence the scale for the dynamics cannot be fixed by the following analysis. It is deter- 
mined by matching of the solutions via variations of y to the correct short-time solution 
of equation (2.1) for t - t,. Let us introduce a real parameter f in  order to write 

@(t) =f+ G(t) z@(z) = -7 + zG(z). (2 .2)  

Parameterfwill be specified later, so that some simplifications occur in the equations of 
motion. The real problem is the determination of G(t). The /3 regime will be studied and 
this was characterised in GS implicitly by two inequalities: 

( 2 . 3 ~ )  

(2.3b) 

In this regime the dynamic equations read: 

(-80/4 + 81G(z) 

+ ( 1  + ~ , ) L T [ G ~ ( ~ ) ] ( Z )  + zG2(z )  

+ ( ~ 3  + 63>LT[G3(t)I(z) - y3z2G3(z) 

+ ( y 4  + 8,)LT[G4(t)](z) + . . . = 0. (2.4) 

The coefficients yk and 8k depend onfand V :  

8k = ( d k A F / d f k ) ( l  -f3/k! ( 2 . 5 ~ )  

A F =  F - f ( 1  -? ) - I  (2.5b) 

Y k  = 1/(1 - f ) " - ' .  (2.5c) 

The non-ergodicity parameter of the theory, the glass form factor f = @(t+ m), is 
obtained from AF(V, f )  = 0, where the variables have been indicated for the sake 
of clarity. Glassy states are those V where the solution yields f > 0. Glass transition 
singularities are the bifukcation singularities (V,, f c ) .  The relevant singularities are cusp- 
oids Al of degree 1 = 2 , 3 ,  . . . . Denoting 8;  = 8k(Vc, f c ) ,  cuspoid AI is characterised by 
8;  = 0, k 5 I - 1, 8f # 0 (Arnold 1986). Since the 8k are also the relevant parameters 
entering the full dynamic equation (2.4),  the various glass transition singularities can be 
classified according to the cuspoid degree. The simplest singularity is the Whitney fold 
A,. The set Sc of fold singularities is a hypersurface in R,. The dynamics was discussed 
in detail in GS. In this paper the next type of singularities, the Whitney cusps A3, will be 
analysed. The corresponding points V ,  are endpoints of S,. They will be referred to as 
simple endpoints, in order to distinguish them from the complicated ones AI, 1 > 3. If 
one introduces the exponent parameter A = 1 + 8; and the cusp parameter p = - 85, 
the simple endpoints are characterised by A = 1, p > 0. Explicit expressions for A ,  p are 
given in equations (3.1) of GS. The F I 2  model has one endpoint, where 

U ;  = 1 U ;  = 1 f c  = 0 p = l  F I 2  model. ( 2 . 6 ~ )  

The F,, model also has one endpoint with 

v c  1 - 8  - 3 U ;  = 9 f c 3  p = l  F,, model. 
(2.6b) 
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Equation (2.4) is the basic starting point for our analysis of the relaxation behaviour 
at A 2  and A3 singularities, as well as higher-order ones. However with every cuspoid A, 
there is a distinct new topological scenario as compared with previous ones of lower 
order. So the solution for the present case a2  = 0 but a3 # 0, characterising the cusp A3, 
is not a special case or simple limit of the solution for the fold A2, with d2 < 0, analysed 
in GS. 

3. Critical decay 

Let us consider first the solution of the dynamic equations for parameters V,  at the 
endpoint. The solution will be referred to as critical relaxation. In this case we choose 
f=f ,so that a,, = a1 = a2 = 0; then equation (2.4) specialises to 

LT[G2(t)](z) + zG2(z) 

- ,WT[G~(~)I(Z)  

+ y5{LT[G3(t)](~) - z2G3(z)} + 82LT[G4(t)](~) + . . . = 0. (3.1) 

L(i/z) - - z ~ ~ [ L ( t ) ] ( z )  (3.2) 

To solve this equation we exploit the property 

an asymptotic equality for z+ 0, which follows from the Tauberian theorem for so- 
called slowly varying functions L(t). The latter are defined by the property 
L(tx)/L(t) + 1 for t+ 3~ for allx > 0 (Feller 1971, ch. 13). Therefore every G(t) = L(t)  
will make the first line of equation (3.1) vanish in leading order, since with L also L2 is 
a slowly varying function. If one now chooses L properly, one can use the corrections to 
the leading contributions of the first line in equation (3.1) to cancel the leading con- 
tribution of the second line, etc. Examples for slowly varying functions are powers of 
logarithms, lnkt, or iterations of logarithms like In In t or combinations thereof. This 
suggests as a first step to represent the correlator G in terms of another functiong by the 
definition 

G(t) = g[ln(t/t, > I .  (3.3) 
One then expects g to be simpler than G itself. The question of choosing g properly in 
order to achieve the mentioned cancellations is then equivalent to a solution of an 
ordinary differential equation, as is shown in the Appendix. From equation (A.13) one 
obtains the leading-order critical correlator 

Go(t> = p2/ln2(t/ td (3.4a) 

G,(z) = p2(-l/z)/ln2(-iztl). (3.4b) 

Inclusion of the next-to-leading-order term yields 

G(t) = G,(t)[l + C(t) + . . . ]  (3.5a) 

(3.5b) 

Here p 2  = 4<(2)/p and c(2) = n2/6 = 1.645, c(3) = 1.202 denote Riemann’s e-func- 
tion. Fort  + tc the correction Ccan be neglected, G(z) is positive analytic and inequalit- 
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log,,( t R )  

i 

Figure 1. (a) Plot of @(t) versus log,,(tR). Full curve represents the F , 3  model with u l  = 8 ,  
u 3  = 7 and v = 8. Broken curve shows 4 + G,(t) with Go(t) given in equation ( 3 . 4 ~ )  with 
loglo(t18) = -1.50, and dotted curve shows 3 + G(t) with G(t) given in equation (3.5a), 
with log,,(t,8) = -3.25. ( b )  Plot of [@(t)  - versus t8 for the same data as in (a). 

ies (2.3) are obeyed. Hence equations (3.4) provide an asymptotic solution for the 
original equation (2.1). 

There is some critical time ti such that G(t) exceeds unity for t < t?. Similarly, @(z)  
is not positive analytic any more if I z I > l / t? .  Hence the leading-order solution found 
can be used only for t > tE , where 

ti = t,eP. (3.6) 
Since we restrict the discussion to simple endpoints, ,U is of order unity. Hence t l  can be 
chosen such that t? is of order tm and such that matching of the asymptotic solution to 
the microscopic one is achieved. As a result, equation (3.5) describes the dynamics for 
all times outside the microscopic region. This conclusion will be exemplified by two 
diagrams. In figure l(a) the full curve reproduces @(t) from numerical solution of the 
F,, model (Gotze and Haussmann 1988). The dotted curve is the result (3.5) with t l  
adjusted to loglo(t,Q) = -3.25. The correction term C(t) varies between 1.06 and 0.65 
if tincreases over six decades. Therefore the leading asymptote Go, shown as the broken 
curve with the choice log,,(t,Q) = -1.50, is not an adequate description of the data for 
the time interval considered. In figure l(b) the full curve represents [@(t) -- f,] -''' for 
the same data as in figure l(a). The dotted and broken curves show the same quantity 
for the analytic results (3.5) and ( 3 . 4 ~ )  respectively. In this plot the leading asymptote 
Go yields a straight line with a slope given by l/p. Indeed, @(t) yields almost a straight 
line for tQ > 2, but the slope is not the one expected from the true long-time behaviour. 
The correction term C(t) is still too large to be negligible. On the other hand, C(t) varies 
so slowly that G(t) practically yields a straight line also, where however the slope is 
renormalised to l /p(l  + C)l/*. The result (3.5) describes the solution well. 

Let us now reconsider a normal transition point slightly away from the endpoint, but 
still on the critical surface S,, characterised by A < 1. For this case equation (3 .4~)  is to 
be replaced by equation ( 3 . 6 ~ )  of GS: 

G,(t) = ( to / t>" .  (3.7a) 

For small 1 - A the small positive exponent a is related to the exponent parameter A by 
equation ( 3 . 7 ~ )  of GS: 

(3.7b) 

for 

1 - A = C(2)a2. 

This result describes the decay for t exceeding some crossover time t ;  , where t $  + 
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a + 0. We shall now show that the relaxation within the window tm -G t t$ is described 
by the endpoint relaxation formula (3.4) or (3.5). The result will be found by studying 
the stability of the solution for A = 1 at points on the transition hypersurface S,. These 
points are defined by 6 ;  = SF = 0, and being near to the endpoint implies a2 - a2 to be 
small. Equation (2.4) then simplifies to 

~T[G'(t)l(z) + zG2(z) 

- c(2)a2~~[G'( t ) ] (z)  - , u ~ ~ [ G ~ ( t ) ] ( z )  + . . . = 0. (3 * 8) 
It is left to the reader to check that those terms neglected in the dynamic equation do 
not influence the leading-order critical correlations. As above we write the correlator as 
functionofln t, equation(3.3), anduseequations (A.4), (A.S)and(A.7)oftheAppendix 
to derive in leading order the differential equation c(2)(gr2 - a2g2)  = p g 3 .  Hence one 
gets 

G(4 = p2a2p(y4  (3.9a) 

y = ln(t/tl). (3.9b) 

Here function p is independent of parameter a. It is a solution of the equation p'  = 
- ( p 2  + 4p3)lI2. Hence 

p(y) = 4[coth2(y/2) - 11 (3.9c) 

where the integration constant is absorbed in t l .  Equivalently, one can represent the 
result also as 

G(t) = p2a2q(( t / t1)" )  (3.10) 

where q(x) = p(1n x). For small y one getsp(y 4 1) = l/y2 and this reproduces equation 
( 3 . 4 ~ ~ )  for the critical spectrum. For large y one finds p(y %= 1) = exp(-y) and this 
reproduces the power law, equation (3.7~7). The critical correlator found depends sen- 
sitively on two variables: the time entering as ln(t/tl), and the small number a ,  specifying 
the separation from the endpoint. The result is given by a scaling law. Changes of a are 
equivalent to changes of scale. The scale of the correlator p2a2 decreases for A + 1. The 
scale of ln(t/tl) increases like l /a  upon approaching the endpoint. The rescaledcorrelator 
G/a2, considered as a function of the rescaled variable ln(t/t,)a, is given by an a- 
independent master functionp. The scaling law describes a crossover phenomenon. For 
small values of a ln(t/tl) one finds the logarithmic decay law Go characteristic for the 
endpoint, equation ( 3 . 4 ~ ) ;  while the true long-time asymptotics is given by a power-law 
correlator G,, equation ( 3 . 7 ~ ) .  The crossover occurs forya = 2, i.e. for 

ti = t l  exp(2/a) = t l  exp{2[<(2)/(1 - A ) ] " ~ } .  (3.11) 

At the crossover the correlator has the smallvalue G(t$) = (1 - h)/,u. Similar crossovers 
occur in the critical spectra. For small frequencies the true asymptotic sublinear variation 
of the susceptibility is obtained, which is characteristic for a normal type B transition 
(Gotze and Sjogren 1989): 

x" (a i )  = sin(m/2)r( l  - a)  ut; -G 1. (3.12a) 

Approaching the endpoint, the range of validity of this result shrinks to zero. Outside 
this frequency range the endpoint critical spectrum is derived from equations ( 3 . 9 ~ )  or 
(3.4b) : 

, t r w  = rp2/{ln[l/(wtl )1>3 ut$ s 1. (3.12b) 
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Figure 2. ( a )  Coordinate system ( E ,  q )  for the F,,  model close to the endpoint U ,  = u 2  = 1. 
The full and broken heavy curves show the transition line for the B and A transitions 
respectively. Light full curves indicate constant E and q surfaces. The dotted curve shows 
the surface q = 0, and the light broken curve the surface E = 0. (b)  Same as (a) but for the 
F,, model. 

4. fl relaxation near simple endpoints 

In order to discuss the /3 relaxation near simple endpoints, but not necessarily on the 
critical surface S,, it is useful to introduce natural coordinates. The system of coordinates 
(a, A),  the separation and exponent parameters used for the discussion of normal glass 
transitions in GS, is not well adopted for the present problem. For that coordinate system 
the A = 1 hypersurface defines a boundary and so only half of the neighbourhood of the 
endpoint can be described by it (see figures l(a) and ( b )  in GS). Since il = 1 is the 
defining property of the endpoint, we will use this equation for all points near the 
endpoint V,. So let us specifyysuch that 

6 2 [ W ) ,  VI = 0 f ( W  = f c .  (4. la) 

The condition p # 0 is equivalent to d s2/df # 0 and therefore f( V) is defined uniquely 
as a smooth function of Vfor all Vnear V,. Let us characterise the neighbourhood of the 
endpoint through the two parameters 

(4. l b )  W )  = so[Av),  VI 

q(V> = m v ) ,  VI (4. IC) 

which become zero at the endpoint. One can consider the transition from ( U , ,  

u 2 ,  . . . , u N )  to ( g , q ,  U , ,  . . . , uN) as coordinate transformation in parameter space. The 
construction of the hypersurfaces E = constant or q = constant is as elementary as 
explained in GS. Figures 2(a) and ( b )  illustrate the result for the F,, and F,, models 
respectively. While figure 2(b) exhibits the generic case, figure 2(a) shows some pecu- 
liarities due to the coincidence of A-line and B-line endpoints. 

Using the new coordinates, the equation of motion (2.4) takes the form 

zG2(z )  + LT[G~(~)](z)  

+ ( - g / ~ )  + ~ G ( z )  - pLT[G3(t)](z) + . . . = 0. ( 4 4  
Here we have anticipated that the neglected terms do not contribute to the leading-order 
result for E+ 0, q + 0, z + 0. One has to check this after construction of the solution; 
a task which is left to the reader. One notices that only the two coordinates E, q are 
relevant for the discussion. For p we can take its value at Vc. 
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The new coordinate system overlaps the previously used one and it is of some interest 
to understand this in detail. So let us describe the variables U and A in terms of 5 and q .  
To proceed one introduces a renormalisation off by writing 

G(t) = Sf + F(t ) .  (4.3a) 

Substitution into equation (4.2) yields 

z F 2 ( z )  + ALT[F*(t)](z) 

+ ( -Ao/z)  + A , F ( z )  - p L T [ F 3 ( t ) ] ( 2 )  = O (4.3b) 

where the following abbreviations are used: 

A = 1 - 3pSf A0 = 6 + qdf - p6f3 A ,  = 7 - 3p6f2. (4.3c) 

The old coordinates have been defined by using such Sf  that A = 0, A = A < 1. Hence 
S f  = (q/3p)’I2. Since U = Ao,  the chosen Sf implies 

1 - A = 3p(q/3p)1/2 U = E + $q(q/3,u)l’,. (4.4) 
So the part of parameter space q > 0 was covered by the discussion of GS. The boundary 
il = 1 is the hypersurface q = 0. The corresponding curves are shown dotted in figures 
2(a) and (b). The hypersurface S, of normal transition points is characterised by (T = 0, 
i.e. 

S, : E = -3q(q/3p)1’2 q > o .  (4.5) 
For the F12 and F,, models the phase transition lines are shown in figures 2(a) and (b) 
as heavy curves. The endpoints 6 = q = 0 are marked by small open circles. 

the dynamics can be understood 
from the result of § 3, and from the general results for the dynamics of normal transitions. 
Here t; and a are given by equations (3.11) and (3.7b), (4.4). For times between t ,  and 
tg one finds the critical endpoint dynamics, given by equations (3.4). For larger times 
the /3 relaxation of A, singularities describes the decay. So for tg < t < t, the critical 
power law, equation (3.7a), is observed. For U > 0 and t > tu, G(t)  approaches expo- 
nentially its asymptotic value, given by the glass form factor. For U < 0 and tu < t < t, 
G(t) continues to decay as described by the von Schweidler law, equations (4.18) in GS. 
The time t is the scale for the a process. The dynamics for t > t is outside the range of 
validity of the present equations. The susceptibility spectrum exhibits the known a peak 
located at U - l/t. 

The critical correlations are stable against the two perturbations proportional to 
and q in equation (4.2), if lg/pl < i z~~[G;( t ) ] (z ) I  and ~ q G o ( z ) / &  < i ~ ~ [ G ; ( t ) ] ( z ) l ,  
where p is of order unity. These inequalities define two timescales t5 and t, or cor- 
responding frequency scales wg and m,. Substituting equations (3.4) one finds 

For points so close to S, that tg d tu = to,/ 

( 4 . 6 ~ )  

(4.6b) 

and 

This result generalises the findings of the preceding section to arbitrary points near V, .  
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For short times relative to the scales tE, t, the critical endpoint relaxation is observed. 
The interval for the validity of equations (4.7) expand exponentially if (g, 17) + (0,O). 
The critical correlator G,(t) describes the decay down to the small value 

~ ( t  MW,, t ,  1) = M=(( I ~ 1 / 4 1 / 3 ,  ( I  17 i/m. (4.7c) 

In order to go beyond the above critical region, let us express the correlator as 
function of In t as in equation (3.3). According to equations (A.2), (AS)  and (A.7) the 
dynamic equation (4.2) reduces in leading order to the differential equation 
r(2)g’2 + + yg - pg3 = 0. We rewrite it into an explicit equation such that g’(y) < 0 
for large y: 

d Y )  = P2P(Y) 
p’  = -(4p3 - g,p - g p .  

Here the following abbreviations are introduced: 

82 = (4V/P>/P4 8 3  = (46/P)/P6. (4.10) 

The results (4.7) are rediscovered if g2p  and g, can be neglected in equation (4.9). So 
one gets 

P(Y) = M Y  - Yl), y - y 1 + + 0 .  (4.11) 

Here the integration constant y, = In tl fixes the microscopic timescale in equations 
(3.4). According to the discussions above one can use the asymptotic result (4.11) 
qualitatively up to y - y , = 1. One then gets 

p(y - y, = 1) 2 1. (4.12) 

In addition to S, there are two further hypersurfaces exhibiting transparent relax- 
ations which can be described by logarithmic scaling laws. On the hypersurfaces A = 1, 
indicated by dotted lines in figures 2(a) and (b), one gets g2 = 0. Let us for the moment 
restrict ourselves to < 0. From equation (4.9) one finds: 

(4 .13~)  

(4.13b) 

Here the master function obeys p‘  = -2(p3 + 1)lI2.  The integration constant y, in 
equation (4.11) has been eliminated by introducing t,. So one getsp(y + 0) = l/y2. For 
p - f  0 one findsp- -20, + yo). The result has to be compatible with equation (4.12) 
and thisrequiresyo = -$CL, where CIisof order unity. So the scalinglaw (4.13) describes 
the crossover from the critical decay to a simple logarithmic time variation: 

(4 .14~)  G(t) = ( - 2 / P )  ( I 5 I / P )  1’2 W l t k  1 y = o  
where 

(4.14b) 

This law is valid for tt 4 t 4 tF , where the new scale 

is the relevant one for the a process. These formulae extend a recent result (Gotze and 
Haussmann 1988) in two respects. First, the previously unspecified scale t i  is now 
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determined. Secondly, the time interval for the validity of equation (4 .14~)  is understood 
and the relevant range in parameter space is identified as the neighbourhood of the 
A = 1 or q = 0 hypersurface. 

The hypersurfaces E = 0, q < 0 are located in the centre of that region which is not 
covered by the d-ocoordinate system, as seen from equation (4.4). The respective lines 
are shown in figures 2(u) and (b) as light broken lines. From equation (4.10) one gets 
the characterisation for these parameter points: g, = 0, g, < 0. Equations (4.6), (4.8) 
and (4.9) imply again a logarithmic scaling law 

(4 .15~)  

(4.15b) 

In this case the master function follows from the differential equation p' = 
-2(p3 + p) l / , .  The large p behaviour is the same as above. In the opposite limit 
one finds p - ( y o  - for y < yo.  The correct matching according to equation 
(4.12) requires y o  = 2CII, where CII is of order unity. So the result describes a crossover 
from the critical decay to a quadratic logarithmic variation 

G(t) = (lTl/PP2) ln2(C/t) E = O  (4 .16~)  

t ;  = tl(t,/tl)2C11. (4.16b) 

This law holds for t, < t 6 th, where the latter time again is the scale for the a decay. 
The dynamics near A2 singularities is governed by one scale to. Approaching the 

normal glass transition, o+ 0, this time diverges. This divergence is a manifestation of 
the slowing down of the dynamics near the critical points. The dynamics near the A, 
singularity is ruled by the two timescales tE,  t,. Again their divergence near the endpoint 
characterises the slowing down of the dynamics. The decay laws (4 .14~)  and (4 .16~)  are 
the analogues of the von Schweidler law. This latter law describes the high-frequency 
tail of the a peak in the susceptibility spectrum. The present results do not describe such 
a peak. In leading low-frequency expansion equation (A.2) yields for the correlators 

G(z )  = (1 /~) (2 /p) (~€~/ ,u)~ '*  ln(l/-iztk) ti-' < < t i '  q = 0 (4 .17~)  

G(z )  = -(l /z)(  I q l /pp2) ln2(1/ -iztk) t;-l I z I t i '  E = 0. (4.17b) 

Therefore the asymptotic form of the susceptibility spectra ~"(0) = wG"(w) reads 

x"(0) = n(lEl/PP2>"2 t;-1 4 w -e t i '  q = 0  (4.18u) 

x"(0) = -4 7 l/PP2) ln(l /ot;)  t;-l 4 w 4 t i 1  E = 0. (4.18b) 

Let us finally consider the cases when E > 0 and q > 0. From equation (4.3) it is 
evident that in this case we can find a solution where G(t) tends to a constant Sf  for 
t + W. Introducing S f  = p2fo we have 

(4.19) 

Along the hypersurfaces q = 0 and E = 0 this equation is solved simply. For g, = 0 we 
findf, = ( c / ~ ) ' / ~ p - ~  and for g, = 0 we findfo = ( q / ~ ) l / ~ p - ~ .  These constants match the 
critical decay for t = t5 and t = t ,  respectively as is seen from equation (4 .7~) .  So for 

> 0, q > 0 we find a critical decay whereafter there is a crossover to a constant value. 
The results above have been tested by numerical solution of equation (2.1) for the 

F12 model close to its endpoint u1  = u 2  = 1. The results along the two hypersurfaces q = 

4fi - g2fo  - g3 = 0. 
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Figure 3. (a) Plot of Q ( t )  versus t52 for the F,, model. The various curves correspond to v = 
552, q = 0, and at long times from left to right E = -0.008/Zn (n = 0-4). (b )  Plot of @(t) as 
in (a )  but for parameters 5 = 0, and from left to right q = -0.05/Zn (n = 0-3). 
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Figure 4. (a) Plot of { Q [ t , ( t e / t l ) Y ~ ]  -f}/~E/p11113 versus y b  and with t152 = 1. The various 
curves correspond to those in figure 3(a). The broken line shows the straight line -2& - 3). 
( b )  Plot of {Q[tl(t,/tl)Yv] - f } / ~ q / p l ' ~ *  versus y, and with t lQ = 1. The various curves 
correspond to those in figure 3(b) .  The broken curve shows the parabola (y, - 2)'. 

0 and 5 = 0 are shown in figures 3(a) and ( b )  respectively. The results refer to v = 552 
and the parameter values 5 = -0.008/2" (n = 0-4) and q = -0.05/2" (n  = 0-3). After 
an initial microscopic decay for t S 1/52 we see the critical decay law. In figure 3(a) this 
is followed by a clear crossover to a ln(t/t&) decay according to equation (4.14a), while 
in figure 3(b) the crossover to the predicted ln2(t/th) decay in equation (4 .16~)  is 
smoother. The data in figure 3 have also been rescaled according to (4.13) and (4.15) in 
order to test the scaling behaviour. The results are shown in figures 4(a) and ( b )  
respectively. It is seen that for small rescaled times there are large deviations from scaling 
but for longer rescaled times all curves fall essentially on one master curve. The broken 
curves in figures 4(a) and (b )  denote the straight line -2(yE - $) and the parabola 
(y, - 2)2 respectively. The large deviations from the critical decay law are further 
illustratedin figure5whereweshow [@(t)  - f]-'/2forthecurvesinfigure3 corresponding 
to 5 = -0.0005 and q = -0.00625 respectively. The broken curve is the asymptotic law 
G,(t) in equation ( 3 . 4 ~ )  and the dotted curve is G(t) from equation (3 .5~) .  In order to 
see fully the critical decay one has to go to even smaller 5 and q values. The susceptibility 
spectra corresponding to the data in figure 3 are shown in figure 6. Figure 6(a) clearly 
shows the development of the plateau value in equation (4 .18~)  and in figure 6(b)  there 
is some indication of a crossover from a critical decay for to a linear 
decay for smaller co as predicted by equation (4.18b). 

< w / Q  < 
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Figure 5. Plot of [@(t) - &'/' versus fQ for the curves in figure 3 corresponding to 5 = 
-0.0005 and 7 = -0.00625. The broken curve represents the result G,(t) in (3.40) and the 
dotted curve the result in equation (3.50), both with t,R = 0.1. 

0.20 

0.15 

0.10 

0.05 

W l R  W i R  

Figure 6. (a) Plot of ~"(0) versus w/R for the data shown in figure 3(0). ( b )  Plot of ~"(0) 
versus w/R for the data shown in figure 3(b). 

The preceding analysis brought out simple relaxation laws if the parameters are 
chosen on certain hypersurfaces. By continuity the results describe the relaxation also 
for parameters near the specified sets: B = 0, q = 0 or e = 0. There now appear a large 
variety of crossover phenomena if one moves in parameter space from one hypersurface 
to another. They are described by the general solution of equation (4.9) with initial 
condition (4.11). This is the Weierstrass elliptic function with invariants g2 and g 3  
(Gradshteyn and Ryzhik 1965, ch 8.16). 

(4.20) G(t) = p2Wn(t/t1);  gz, g31. 

This function exhibits the homogeneity property 

W y ;  g,, g3) = s 2 9 ( s y ;  s-4g2, (4.21) 

which can be read off from equation (4.9) easily. Applying this formula for s = 
l/ln(t/tl), expressing the parameters in terms of the scales, equations (4.6) and 
(4.10), and using the notations (4.136) and (4.156) one can write the result for the p 
dynamics in the whole neighbourhood of the endpoint in the condensed form: 

(4 .22~)  

(4.22b) 
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The sign alternatives refer to q 2 0 and f S 0 respectively. This formula expresses G(t) 
as a two-parameter logarithmic scaling law. 

The Laurent series of 9 yields the critical correlator as leading contribution and 
power series expansion in terms of y: and y$ for the corrections: 

G(t) = G,(t)(l * iyy“, 2 +yf + . . .). (4.23) 

This formula covers the whole neighbourhood of the endpoint including the transition 
hypersurface S,. The expected power laws, equation (3 .7~) ’  are here expanded for small 
exponent a :  (to/t)O = 1 + a ln(to/t). 

Applying the homogeneity equation (4.21) yields 

9(1; k 4y;, * 4yf) = s q s ;  2 4(y,/s)4, +- 4(ys/s)6]. (4.24) 

Choosing s = ys or s = y, one can rewrite the two-parameter logarithmic scaling law in 
the equivalent forms 

(4.2%) 

(4.25b) 

Comparison with equations (4 .13~)  and (4.157) thus yields the formulae for the master 
functions in terms of 9: 

(4 .26~)  

(4.26b) 

Expanding equations (4.25) with respect to g 2  or g, yields the leading corrections to the 
scaling laws (4 .13~)  or (4 .15~) :  

(4 .27~)  

(4.276) 
G(t) = ( l~l /P)’ i3PI(Y~)[ l  +fI(Y5>(Y,/YE>4 + . . . I  
~ ( t )  = ( I ~ / P ) ” ~ P ~ ( Y ~ ) [ ~  + ~ I I ( Y , ) ( Y ~ / Y , ) ~  + .  . . I .  

For the prefactors of the corrections one finds 

f I  = i[&(9’/9)r: + 91 
~ I I  = -4[3(9’/9)C + 6 9  + 4/91. 

(4 .28~)  

(4.28b) 

Here < denotes Weierstrass’ < function and the arguments are the same as in equations 
(4 .26~)  or (4.26b) respectively. These formulae quantify the corrections to the log- 
arithmic decay laws (4.14a) and (4 .16~)  if one moves away from the specified hyperplanes 
q = 0 or 5 = 0 respectively. 

For a discussion of the properties of 9 the discriminant A = g: - 27g: is of import- 
ance. From equation (4.10) one finds 

(4.29a) 
For the region of definition of the coordinates (a, A )  one can write with equation (4.4) 

(4.296) 
Hence the transition hypersurface S, is characterised by A = 0. Near S, one can simplify 
this expression to 

(4.294 
Equation (4.9) can be written as 9’ = -2[(9 - e l ) (9  - e 2 ) ( 9  - e3)I1i2 where the roots 

A = (432/P’2)[4(d3P)3 - (5/P>21. 

A = (432/p’2~2)[$~(~/3p)’’2 - 510. 

A = ( 6 4 / ~ ~ p ’ ~ ) ( 1  - A ) 3 ~ .  
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ek are the solutions of equation (4.19). Thus A > 0 characterises the region where there 
are three different solutions forfo. At  the phase transition hypersurface two roots are 
degenerate and at the simple endpoint all three roots coincide. The normal transition 
anomalies are obtained therefore by specialising equation (4.20) to small A .  The results 
are known from GS and will not be repeated. 

5. Conclusions 

The most general mode-coupling theories of the idealised glass transition studied so far 
deal with sets of correlators @,(f), describing the relaxation of density or spin-density 
excitations of wavevector q (Bengtzelius et a1 1984, Gotze and Sjogren 1984). The 
equation of motion has the form (2.1), where however v ,  52, Fare  to be generalised to 
wavevector-dependent quantities v,, Q,, F4. The functions v,, 52, do not enter the scale- 
invariant equation for the correlators near glass transition singularities. The mode- 
coupling functional has the general form 

F q [ @ k ( t ) ]  = x(l/l!) V(')(q;  k l , .  ' . >  k,) @kl(t). . . @ k l  ( t ) .  (5.l)  
I k l . .  k i  

The non-negative decay vertices V(')  are the mathematical control parameters. They 
depend smoothly on the physical control parameters x l ,  x2, . . . , xM, like temperature 
T ,  magnetic field B ,  density n,  etc. The crucial new concept entering the discussion of /3 
relaxation of systems described by more than one correlator is the stability matrix 

It is essentially the Jacobian matrix evaluated at the bifurcation points V,. This matrix is a 
non-degenerate Frobenius matrix and thus it has a non-degenerate maximum eigenvalue 
Eo. The critical points are characterised by Eo = 1. The left and right eigenvectors &, 1, 
are uniquely determined by the normalisation requirements: 

I ,  > 0 2, > 0 c, f 4 1 4  = 1 2 i,(l -G)l,l, = 1. 

( 5 . 3 )  
4 4 

Then one finds for the correlator within the /3 region 

@.,(t) =f, + h,G(t) + h;G'(t) + .  . . ( 5 . 4 ~ )  

where 

h,  = (1 - (5.4b) 

Function G(t) is independent of q and it obeys equation (2.4). The parameters 8k, Y k  in 
this equation can be expressed in terms of V('),fand l4 and thus they are smooth functions 
of xl, . . . , xM. In this manner the general problem is reduced to one dealing with a single 
correlator G(t) only. The proofs of the preceding results can be found elsewhere (Gotze 
1985,1987). 

Notice that the last term of equation ( 5 . 4 ~ )  yields a correction to scaling laws of a 
different type than the ones discussed in the preceding calculations. This correction is 
of higher order, however. It does not modify the result (3.5),  nor does it enter the next 
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correction to equation (3.5) which we have not evaluated explicitly. It is of order l/y4. 
So all models yield as critical correlator at a Whitney cusp for y .+ m:  

a & )  -f‘, = h,02/Y2 Y = W t l )  (5.5a) 

p 2  = p2[1  + 4.384(1ny)/y + C/y]. (5.5b) 

Only those terms which vanish faster than l/y3 get a more complicated q dependence. 
If one is not at the cusp but close to it, equations (5.5) hold for y up to some crossover 
value. In certain regions of parameter space, specified in § 4, the crossover leads to the 
simple law 

- f q  = hq(-2/P)(IEl/PP2 W t i )  (5.6a) 

or to 

- f q  = hq(1 r llPup2> 1n2(t;lt)* (5.6b) 

Here the scales ri, t; are defined in equations (4.14b), (4.16b) and (4.6). The variables 
( E ,  q )  are the relevant mathematical control parameters for the neighbourhood of the 
singularity. Let us assume that there are two physical control parameters (xl, x 2 ) ,  so that 
the critical point is specified by xl  = 0, x2 = 0. Generically, there is a non-singular 2 x 2 
matrix Ark, so that 

Suppose one has worked out a mode-coupling theory for a microscopic model. As a 
result of such work one gets expressions for the wavevector-dependent quantitiesf,, h,, 
for the two numbers p ,  C and for the four matrix elements A,. No other results would 
enter the dynamics of the /3 relaxation near the cusp. Obviously, our theory has many 
non-trivial implications, where the mentioned information does not enter at all, like e.g. 
the whole shape of the various spectra. 

The mathematical methods of our theory are general enough to deal also with higher- 
order cuspoids. The leading-order result for the critical correlator near an Al singularity 
for 1 3 follows from equation (3.1), as 

Qq(t)  - f‘, = h,{2n2/[3(1 - 2)2(-~~)]}1/( l -2) /y2’( l -2) .  ( 5 . 8 )  

The leading and next-to-leading corrections are given by a factor of the form [1 + 
Cl(ln y)/y + C2/y]. As opposed to the result of equation (5.5b) the constant C1 depends 
on the details like y ;  in equation (2.4) if 1 > 3. Consider as a special case 1 = 4. The 
general solution can be expressed in terms of a three-parameter scaling law. There will 
be regions in parameter space where one finds the laws (5.6). There appears furthermore 
a region where the critical decay in (5.8) is followed by the l/ln2(t/tl) law of the Whitney 
cusp. These results follow from a discussion similar to that in 09 3 and 4. 

Recently glass transitions have been discussed within a Pott’s model by Kirkpatrick 
and Thirumalai (1988). They derived dynamic equations under the assumption of small 
non-ergodicity parametersf, and found their theory to reduce to our F12 model. Small 
f c  implies parameters in the neighbourhood of the endpoint shown in figure 2(a). There- 
fore our result (4.20) presents the solution of the specified model and our figures 3-6 
exemplify the features of the specified dynamics. More recently Fisher and Huse 
(1988a, b) have formulated a phenomenological scaling theory for spin glasses. They 
study low excitations of spin droplets, which are characterised by several fractal dimen- 



4218 W Gotze and L Sjogren 

sionalities. They find in particular correlation decay according to a law m(t) l/ln"(t), 
with an exponent x for which they can motivate upper and lower bounds. This law is 
compatible with our critical decay law, if one identifies x = 2/(1- 2) for the cuspoid Al, 
equation (5.8). They describe crossover phenomena by normal scaling laws, a result that 
is too simple to fit into our scenario. 

The mode-coupling theory derives the waiting time statistics for the motion of the 
system through the potential landscape, defined in the high-dimensional configuration 
space. This motion can be characterised by a local stochastic time 0, (Sjogren 1989, 
Gotze and Sjogren 1989). Thus the present paper can be summarised by the statement 
that near A, singularities the distribution for the local time satisfies E[@,] = y = ln(t/tl), 
where E[ .  . .] denotes an average. On certain sets in parameter space conventional 
scaling laws are obtained. They have been called logarithmic scaling laws since t is 
replaced by E[@,]. As usual they describe the crossover from one power law to some 
other. In general the dynamics is more subtle, however. Two relevant timescales enter 
and this leads to two-parameter scaling laws. This reflects the fact that generically an A, 
cuspoid can be characterised only in a two-dimensional parameter space (Arnold 1986). 
Ln t is a slowly varying function, and we want to emphasise two implications of this 
property which follow from previous discussions of dynamic scaling laws. First, there is 
a transient interval of 0.5-1 decade between the region of microscopic motion and that 
region where corrections to scaling can be neglected; see figure 1. Secondly, one has to 
study the correlators over at least 1-2 decades in order to test the typical crossover 
phenomena described by scaling laws; see figure 5. In our case the decades refer to In t 
and not to t itself. Thus the whole relaxation is stretched out much further than is familiar 
from conventional power-law decay. One has to detect relaxation over huge intervals if 
one wants to discover the underlying scaling laws. On the other hand, corrections to 
scaling are slowly varying functions as well. So occasionally they may just be treated as 
constants. So we predict a critical power law (5.5a) to hold over, say, five decades of 
time variation, provided y is not too small. The prefactor p 2 ,  however, would not be 
equal to the value p2. Rather it would be larger, and accurate measurements should 
bring out that it varies logarithmically with increasing time, as shown in figure l(b).  

The experimental findings for the dynamics of structural glass transitions fit the 
scenario of A, singularities rather than that of A, ones, as was indicated in the intro- 
duction. However, one should notice that generically the cusp singularities are located 
within the glass and not at the border between liquid and glass. Figure 2(b) shows a 
representative case, while figure 2(a) exhibits an exception in this context. The simple 
schematic model introduced by Bosse and Krieger (1986) for a discussion of the glass 
transition in ionic melts exhibits A, lines and also one A 4  point. Furthermore it was 
argued recently (Bosse eta1 1988) that the relevant parameters for the description of the 
Ca-K-NO, glass former are close to the A 4  cuspoid. So endpoint singularities might be 
relevant and in this case one expects two anomalies. First, for temperatures Tbelow the 
critical temperature T, of the A2  transition, slow logarithmic decay and crossovers 
between logarithmic and power-law decays should occur. Secondly, the timescale z for 
a relaxation, in particular the scales ruling transport coefficients like viscosity, should 
exhibit Vogel-Fulcher like variations with control parameters according to e.g. equation 
(4.14~) .  If the temperature is varied the system moves on a path V ( T )  in parameter 
space. The projections E( T ) ,  ? I (  T )  on the two relevant variables are important. Suppose 
that one hits the singularity for T = To: E (  To)  = q( To)  = 0. Then our theory predicts 

with x = i, 3 or Q depending on the sector of parameter space under study. In general a 
z exp[C// T - To I " ]  (5.9) 
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path might come close to V,, but it will not hit it precisely, so t does not diverge. Hopping 
processes, which are ignored in this paper, will eliminate the divergence for T = To in 
equation (5.9) in any case (Gotze and Sjogren 1987, 1988). So one may expect that 
equation (5.9) holds for To < T < T,, but if T approaches To function t ( T )  will remain 
finite and cross over e.g. to an Arrhenius behaviour. Such a scenario has been discussed 
often in the literature with t described by the Vogel-Fulcher law. This is equation (5.9) 
with x = 1. Under the specified conditions the laws with x = 1 and x # 1 cannot be 
discriminated experimentally. 

Let us now consider the relaxation data for the Cu : Mn spin glass quoted in the 
introduction. Neutron scattering and muon spin relaxation determined @(t) for 
lo-'* < t < lo-* s. The data have been fitted by a power-law decay @(t) - f = A/t' 
(Heffner and MacLaughlin 1984). The fit exponent a was 0.25 for T/Tg = 1.10, 0.94, 
where the glass transition temperature Tg is about 27.5 K. For lower temperatures 
exponent a was found to be 0.50. A power-law decay with a temperature-dependent 
exponent was predicted earlier by Sompolinsky and Zippelius (1982). However, they 
found a = f for T 3 Tg and obtained an a which decreased with decreasing temperature 
for T < Tg. A similar result follows from our p relaxation theory of type A transitions 
(Gotze and Sjogren 1989). Thus the found temperature variation of exponent a, with a 
minimum around Tg,  contradicts the mentioned theoretical pictures. Indeed, it was 
demonstrated that an explanation of the neutron scattering data within a simple type A 
transition scenario is not possible; one can describe reasonably the high- and low- 
temperature data but not the ones for T - Tg (Gotze and Sjogren 1984). A fit of the 
neutron scattering data is possible within the F13 model, where I, and u 3  are constants 
and u1 varies linearly with 1/T. The data for t > lo-" s can be described by keeping the 
microscopic timescale R fixed. If one wants to account also for the data at the shortest 
time t - 3 x s, one has to assume S2 to decrease with decreasing temperature 
(Gotze and Hausmann 1988). Within our present notations this means that the time tl 
for the matching of microscopic motion and /3 relaxation increases with decreasing T. 
Mezei (1983,1986) argued that the spin dynamicsfor t C lo-" s is governed by thermally 
activated cluster motion. Thus the dynamics on microscopic scales is complicated and 
depends strongly on T ,  but these complications are not related to the glass transition 
problem. We adopt this view and accept therefore some T dependence of tl .  It is 
somewhat surprising that a data analysis worked within the F I 3  model, since this model 
imposes three artifacts, for which there is no microscopic justification: the value of the 
form factorf, = 4, a special variation offwith u l ,  and the value f for the cusp parameter, 
equation (2.6b). These artifacts make it impossible to extend the quoted fit to larger 
times. So the remaining challenge is the explanation of the relaxation data for times 
exceeding lo-* s. 

In figure 7(a) relaxation data for T = 26 K and T = 20 K are reproduced. The full 
circles with error bars are neutron scattering results (Mezei and Murani 1979), the open 
circles are AC susceptibility data (Murani et aZ198l), and the full squares are muon spin 
relaxation results (Uemura et a1 1984). A power-law fit of the data would require a value 
of exponent a < 0.2, which indicates that the parameters are close to an endpoint 
singularity. We expect that such a small number cannot be reached by the perturbation 
expansion of a - f using ( Tg - T ) / T g  as small parameter as implied by the theory of 
Sompolinsky and Zippelius (1982). 

In order to test the critical decay law ( 5 . 5 ~ )  one has to show that there is some form 
factor f such that l / [@(t )  - f] ' /* is a linear function of log(t/tl). This test requires the 
introduction of only one fit parameterf. Figure 7(b) shows such an analysis for the data 
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Figure 7. (a) Spin-density correlation function S(q ,  t )  versus t for Cu: Mn. The full circles 
are the neutron scattering data of Mezei and Murani (1979), the open circles are the AC 

susceptibility measurements of Tholence (Murani et a/ 1981, Mezei 1983) and the full squares 
are the muon spin relaxation results of Uemura et a1 (1954). The full curves show the function 
f+ A/log2(t/t,), where the parameters are taken from (b) .  ( b )  Plot of [S(q ,  r )  - f]-’I2 for the 
experimental data in (a ) .  For T = 26 K we use f = 0.06, and for T = 20 K, f = 0.47. The 
straight lines are the best fit to the experimental points and give for 26 K,  y = 
3.66 + 0.22 log,,(t), and for 20 K, y = 4.26 + 0.22 Iog,,(r); tis in seconds. 

log,,(t in s )  log,,(t in s i  

of figure 7(a). For parameter values close to an endpoint, the regular variation of the 
prefactor as a function of Tin  equation ( 5 . 5 ~ )  should be negligible. Thus one expects 
the slopes in the plot to be the same for T = 26 K and 20 K, as obtained by the fit. The 
scale l1 varies, as expected. Data analysis as done in figure 7(b) exaggerates data 
fluctuations if (@ - f) is small. So the elementary expression (5.5u),  with parameters as 
chosen in figure 7(b )  are also included as full curves in figure 7(u) .  Apparently, our 
theoretical results describe the experimental ones for a time interval extending over 
more than eight decades. Obviously, it would be very helpful to obtain more and better 
experimental data for the specified spin glass. One could try to extend the fit to even 
larger times. However, our theory ignores transport processes, which restore ergodicity 
for long times. They are described by the a relaxation theory (Gotze and Sjogren 1987, 
1988). Therefore discrepancies between theory and experiment for long times might be 
caused by effects that are not of relevance in connection with our /3 relaxation theory. 
For these reasons it would be more informative to concentrate the work on the meso- 
scopic time interval of some decades above s. The following problems could be 
studied. It should be decided whether equation ( 5 . 5 ~ )  or rather equation (5.8) with I 4 
describes the critical decay. We have tested the possibility of a critical decay law with 
1 = 4 and found a fit not much worse than the one shown in figure 7(b). So at present we 
cannot rule out the underlying singularity to be of higher order than the Whitney cusp. 
Data for 28 K < T < 30 K could be used to study the predicted crossover phenomena 
from the critical to the simple logarithmic decay in equation (5.6a), and possibly even 
the general scaling laws. It would also be interesting to see whether crossover phenomena 
and the prefactor in equation ( 5 . 6 ~ )  depend sensitively on the magnetic field. 
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Appendix 

In this appendix we will outline a systematic method for solving the dynamic equations 
for p relaxation near endpoints. Let us start by reformulating the Laplace transforms of 
products of slowly varying functions. If one writes G(t) = g[ln(t/t,)] one gets 

(-z)~~[G(t)](z) = d u  e-”g(ln u + y )  (A.1) 

where y = ln[l/(-izt,)]. Taylor expansion of g around y yields 

(-Z)LT[G(t)](z) =g(y) + Lg’(y) + @2g”(y) + &g”’(y> + . . .. (A. 2) 

Here 

rn = d u  e-’ 1n“u 

denotes the nth derivative of the gamma function at unity. The r,, can be expressed in 
terms of Euler’s constant y = 0.5772 and Riemann’s (function (Gradshteyn and Ryzhik 
1965, section 8.321). Replacing G by G2, G3 or GIG2 one finds 

(-z)LT[GZ(t)](z) = g2 + 2Tlgg’ + T2(ggf‘ + g’2) + QT3(gg”’ + 3g’g”) + . . . (A.4) 

(-z)LT[G3(t)](~) = g 3  + 3rlg2g’ + $r2(3g2g” + 6gg”) + . . . 

(-Z)LT[Gl(t)G2(t)l(Z) = g1g2 + rl(gig2 + sls;) 
(A.5) 

For simplicity of notation the argument y is dropped in these and some of the following 
formulae. Combining the results one arrives at 

Notice that in these equations not only the leading terms cancel, as expected from the 
Tauberian theorem, but also the next-to-leading ones. 

With equations (A.7) and (A.8), equation (3.1) for the critical correlator reduces in 
leading order to ((2)gf2 = pg3. From the two alternatives g’ = k (p/((2))’I2g3l2 we 
choose the negative sign, since we are interested in a correlator which decreases for short 
times. Let us mention that the other alternative yields a solution of our equations which 
increases for short times. This solution of equation (3.1) has no relevance, since it 
violates the inequality (2.3b). Hence one gets 

go(Y> = PW)/PI/(Y + Y o ) 2  (A.10) 

where y o  denotes some integration constant. To find the dominant correction bg, we 
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substitute g = go -t 6g  into equation (3.1) and expand in linear order in Sg. With the aid 
of equations (A.5) and (A.7)-(A.10) one finds the differential equation 

(A . l l )  y4Sg' + 3y3Sg = 24C(3)/pL. 

The general solution reads 

6 g  = [245'(3)/~1 1ny/y3 + C/y3. (A. 12) 

The integration constant C can be eliminated by a shift yo-+yl in equation (A.lO). 
Without alteration of the leading and next-to-leading terms, one can change in equation 
(A.12) y -+ y + y,. As a result one gets 

g(y> = [ 4 C P ) / ~ l / ( y  + Y (A. 13) 

Substitutionofy + y1 = In(t/tl) thenyieldsthedesiredresult ( 3 . 4 ~ )  forthecriticaldecay. 
After specification of g ( y )  in equation (A.13) one can check that the expansion in 
equation (A.2) and so forth are asymptotically correct. 

+ [ 2 4 W / p I  WY + Y I)/(Y + Y 113 + . . .. 
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